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Abstract

The aim of this paper is to investigate the turbulent mass transfer in channels\ tubes and annuli for fully developed
hydrodynamic conditions and for developing di}usional boundary layer at large Schmidt numbers[ Three transfer zones
are detected] one corresponding to the leading edge of mass transfer surface for which the Le�ve¼que solution is valid\ the
second far from the entrance where a constant di}usional boundary layer is obtained and the MacAdams equation can
be applied\ and the third is comprised between the two aforementioned zones[ An expression of the mass transfer
coe.cients is proposed for the intermediate zone[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

c¹ mean concentration of the di}using species
c? concentration pulsations
c9 surface concentration
c� bulk concentration
C nondimensional concentration � c¹:"c�−c9#
D molecular di}usivity
dh hydraulic diameter
Dt turbulent di}usivity
jt turbulent mass ~ux
j mass ~ux density
j¼ nondimensional mass ~ux density � jd�:ð"c�−c9#DŁ
K average mass transfer coe.cient
K
 nondimensional mass transfer coe.cient � Kd�:D
kyy\ k constants in the equations "1#\ "12#
l length of the mass transfer active surface
l� di}usion entrance length\ equation "7#
R hydraulic radius
r radial coordinate in polar cylindrical coordinate sys!
tem
Re Reynolds number � v = dh:n
Sc Schmidt number � n:D

� Corresponding author[ Tel[] 99 22 139 0615 22^ fax] 99 22
139 0615 07^ e!mail] legrandÝiutsn[univ!nantes[fr

Tcorr correlation time of the normal velocity pulsations
V mean velocity
y coordinate normal to the wall
yt dynamic length
y¦ nondimensional normal coordinate � y:yt

Y nondimensional normal coordinate with respect to
the di}usion layer thickness � y:d�

z longitudinal coordinate
Z nondimensional longitudinal coordinate �z:0�[

Greek symbols
d� fully developed di}usion layer thickness\ equation
"7#
m dynamic viscosity
n kinematic viscosity
v parameter which characterized surface curvature
r density
t¹ mean wall shear stress[

Subscipts
9 corresponds to the Le�ve¼que solution
� corresponds to the fully developed di}usion layer[

Superscripts
9 corresponds to the plane geometry
0 corresponds to the correction deals with the surface
curvature[
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0[ Introduction

Mass transfer to ~uids ~owing through tubes\ channels
and annuli is frequently encountered in di}erent indus!
trial processes[ The principle of electrodi}usion sensors\
which are now widely used for wall shear stress measure!
ments\ is based on the study of mass transfer phenom!
enon also[ In this paper\ we discuss the mass transfer
problem\ but all the results can be used for the heat
transfer problem if the Prandtl number is rather high[
Undoubtedly the turbulent ~ow regime is the most
important for the practical applications[ As such\ tur!
bulent mass transfer problems have been studied exten!
sively by many workers ð0Ð3Ł[

Nevertheless\ even in the simpli_ed case of fully
developed hydrodynamics\ the previous papers give an
incomplete solution of the mass transfer problem[ Two
types of equations can be found in the literature[ The _rst
one is based on the well!known Le�ve¼que solution ð4Ł
which predicts the mass transfer coe.cient in terms of
the mean wall shear stress[ The Le�ve¼que solution is jus!
ti_ed for the case of short mass transfer length and is
usually used in the literature dealing with the elec!
trodi}usion diagnostics of ~ow[

On the other hand\ rather long mass transfer surfaces
are usually encountered in chemical engineering
processes[ For this case\ di}erent semi!empirical or pure
empirical expressions can be found\ for example the well
known MacAdams formula ð3Ł[ These expressions are
based on either experimental data correlations or semi!
empirical expressions for turbulent di}usivity[

Undoubtedly it is important to establish the limits of
applicability of the equations\ and thus it is necessary to
predict the di}usion entrance length[ Some estimations
of the di}usion entrance length were reported ð5Ð7Ł[ For
example\ Hanratty and Campbell ð6Ł estimated the
di}usion entrance length as 599 yt\ where yt is the
dynamic length[

In the paper of Kader ð5Ł the cubic law DtayN\ with
N � 2\ for the near!wall turbulent di}usivity was used\
which leads to the conclusion that the di}usion entrance
length is independent of the molecular Schmidt number[

On the other hand in ð7Ł\ by means of statistical
method\ it was shown that the power factor N in the
near!wall turbulent di}usivity law cannot be less than 3
and\ as a consequence\ the di}usion entrance length is
dependent on the molecular Schmidt number[ The de_!
nition of the di}usion entrance length should be precise\
too\ as the zones of applicability of the Le�ve¼que and
MacAdams formulae are not continuous[

Therefore\ the numerical solution of the mass transfer
problem with respect to physically well!founded tur!
bulent di}usivity law N � 3 is important both from the
practical and fundamental points of view[ The other goal
of this paper is to study both plane and cylindrical ~ow
geometries\ which will allow us to use the results of the

calculations to predict the mass transfer rate in channels\
tubes and annuli[

1[ Statement of the problem

In this section\ we shall consider turbulent ~ow of an
incompressible liquid along the ~at solid boundary\
y � 9[ The cylindrical geometry will be considered in
Section 3[ At the core of the ~ow\ y : �\ the con!
centration of the di}using substance is c�[ On the mass
transfer active part of the solid boundary "y � 9\ z × 9#\
the concentration is equal to c9[ The Oz!axis is along the
surface\ the Oy!axis is perpendicular to the boundary[ In
the transversal direction the problem is homogeneous[

We shall restrict the problem to the case where the
molecular di}usion in the longitudinal direction is neg!
ligible and only the normal component of the turbulent
di}usion ~ux caused by the normal concentration gradi!
ent is important[ Then for the fully developed hyd!
rodynamic conditions the turbulent di}usion equation
can be written as ð5\ 7Ł]

t¹:my1c¹:1z � 1:1yðD¦Dt "y#Ł1c¹:1y "0#

where t¹ and c¹ are the mean wall shear stress and con!
centration[ D and m are the molecular di}usivity and
dynamic viscosity\ respectively[

Equation "0# is of a parabolic type and boundary con!
ditions which should be used are the following]

c : c� as y : � or z : 9

c : c9 as y : 9 or z × 9[

The turbulent di}usion coe.cient Dt is a function of the
normal coordinate y

Dt "y# � kyy 0
y
yt1

N

"1#

where yt � n"r:t¹#0:1 is the dynamic length[
Two di}erent power factors\ N � 2 and N � 3\ were

proposed in the literature ð0Ð2\ 5Ð09Ł in the near!wall
turbulent di}usivity law\ equation "1#\ mainly in relation
to the problem of fully developed di}usion layer[ the only
paper ð5Ł\ where the problem of the developing di}usion
layer was studied numerically\ was founded on the cubic
"N � 2# turbulent di}usivity law[ In our opinion\ the
cubic law has no physical meaning due to results of the
treatment of this problem by means of statistical method
ð7Ł[ By multiplying the equation for the concentration
~uctuations with the ~uctuating velocity in another
space!time point\ v "t?\ r?#\ an equation is obtained ð7Ł for
the velocity and concentration ~uctuations correlator]

1S
1t

¦u
1c?
1z

−DDS � −WZ

1c¹
1z

−Wy

1c¹
1y

S"t\ r^ t?\ r?# � ðc?"t\ r#v?"t?\ r?#Ł

Wz\y"t\ r^ t?\ r?# � ðv?z\y"t\ r#v?"t?\ r?#Ł[ "2#
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Here u is the mean ~ow velocity and ðŁ denotes statistical
averaging[ The estimation of the di}erent terms in equa!
tion "2# with respect to available information about
characteristics of the near!wall turbulence have shown
ð7Ł that\ in the main part of the di}usion layer\ the term
1:1t dominates in the left!hand of this equation[ If we
keep only the term 1S:1t in the left!hand side of equation
"2#\ the following expression for the turbulent mass ~ux
can be obtained]

jt "z\ y# � ðc?"t\ r#v?"t\ r#Ł � −DZ"y#
1c¹
1z

−Dy"y#
1c¹
1y

"3#

Dz\y"y# � −g
9

−�

Wz\y"t−t?^ r? � r?# d"t−t?#[ "4#

In particular\ for the normal component\ jy\ of the tur!
bulent mass ~ux caused by the normal concentration
gradient\ we obtain the traditional relation]

jy � −Dt"y#
1c¹
1y

"5#

where the turbulent di}usivity Dt has the form ð7Ł]

Dt"y# � g
�

9

ðv?y"t\ r#v?y"9\ r#Ł dt � v?1yTcorr "6#

where r is the space vector and Tcorr the correlation time
of the hydrodynamical pulsations within the viscous sub!
layer[ So\ the turbulent di}usivity near the wall is equal
to the product of the normal velocity ~uctuations inten!
sity and their correlation time[ The normal velocity near
the wall is proportional to the square of the normal
coordinate[ So\ the power factor in the near!wall tur!
bulent di}usivity law should be equal to at least 3 and
the cubic law\ which is frequently used\ has no physical
meaning[ So\ below we shall use the power factor N � 3
in the near!wall turbulent di}usivity law[

2[ Numerical solution of the problem

Let us introduce the dimensionless variables]

Z � z:l�^ Y � y:d�^ C �"c−c9#:"c�−c9# "7#

with

d� � 0
D
kyy1

0:3

yt^ l� � d2
�

t¹
"Dm#

\

where d� is the fully developed di}usion layer thickness
and l� is the di}usion entrance length[ Then\ the
di}usion!convection equation and the boundary con!
ditions take the form]

Y1C:1Z � 1:1Yð"0¦Y3#1C:1YŁ "8#

C : 0 as Y : � or Z : 9

C : 9 as Y : 9 and Z × 9[ "09#

Equations "8# and "09# were solved numerically by a

_nite di}erent method[ The numerical procedure is
realized in the range 9¾ Z ¾ Zmax\ 9 ¾ Y ¾ Ymax[ The
limiting values Ymax and Zmax are determined in order to
provide the necessary accuracy for the mass ~ux with
respect to the known analytical solutions for beginning
region layer and for the fully developed di}usion layer[

The boundary condition for the concentration Z � 9\
Y � 9\ equation "09#\ is not continuous\ hence it is more
convenient to perform the numerical procedure in the
range o ³ Z ³ Zmax\ o ð 0\ where the concentration dis!
tribution is continuous[ The boundary condition at Z � 9
can be changed[

C : C9"o\ Y# as Z : o \ Y × 9\ "00#

where C9"Z\ Y# is the well!known Le�ve¼que solution for
the entrance zone of the di}usion layer[

The inertial term in the equation "8# tends to zero as
Y : 9[ As a result\ the system of the _nite di}erence
equations in orthogonal uniform grid becomes unstable\
i[e[ a small deviation of coe.cients causes a large vari!
ation of the numerical solution[

The correct system of the _nite di}erence equations
can be obtained if we use a nonuniform grid with respect
to the Y!variable in order to avoid a sharp variation of
the term 0:ðYDY1"Y#Ł when Y tends to zero[ Here DY
corresponds to the grid step[ The _nite di}erence
approximation of equation "8# leads to a system of linear
algebraical equations\ which was solved by a GaussÐ
Seidel algorithm[

The results of the calculations of the mass transfer
coe.cient

K
"Z# � 0:Z g
Z

9

j¼"Z	# dZ	^ J
"Z# � 1C"Z\ Y � 9#:1Y

"01#

are presented in Fig[ 0[ For the small values of Z\ the
mass transfer coe.cient can be approximated by means
of the Le�ve¼que solution at Z � 9[914 with 0) accuracy
and at Z � 9[98 with 4) accuracy respectively[ The Le�v!
e¼que solution approximates the mass ~ux density\ J
"Z#
at Z � 9[95 and at Z � 9[11 for 0 and 4) accuracy\
respectively[

For the large values of Z the density of the mass ~ux
becomes constant and is equal to]

J
� � 0g
�

9

0

0¦y3
dy1

−0

"02#

The numerical values of the longitudinal coordinate
which characterize the zone of applicability of the fully
developed mass ~ux density solution are Z � 9[5 and
Z � 9[24 for 0 and 4) accuracy\ respectively[

The mass transfer coe.cients for large values of Z
tends to its limiting value

K
� � J
�¦A:Z^ A � 9[02 "03#

where the constant A was obtained by means of the
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Fig[ 0[ Mean transfer coe.cient as a function of longitudinal coordinate in nondimensional variables[

results of the numerical calculations[ The parameter A
characterizes the in~uence of the entrance section on the
value of the mass transfer coe.cient in the fully
developed di}usion layer[ Equation "03# can be used for
the prediction of the mass transfer coe.cient with 0)
accuracy at Z � 9[4 and with 4) accuracy at Z � 9[14[
In the zone 9 ³ Z ³ 9[6 the following formulae present
the numerical results with 88) accuracy]

j¼"Z# � j¼9"Z# � P"Z#^ P"Z# � s
2

n�9

pnZ
n^

p9 � 8[5×09−3^ p0 � 9[57^

p1 � −9[49^ p2 � 9[10 "04#

K
"Z#¦K
9"Z#¦Q"Z#^ Q"Z# � s
1

n�9

qnZ
n^

q9 � 0[6×09−2^ q0 � 9[21^ q1 � −9[09 "05#

where the functions

j¼o"Z# � aZ−0:2^ K
o"Z# �
2a

1
Z−0:2^

a �
20:2

G"0:2#
¼ 9[43 "06#

correspond to the Le�ve¼que solution[ Equations "04# and
"05# are only a satisfactory approximation\ obtained by
linear regression\ for the numerical solution in the tran!
sition zone[ It means that we have not considered equa!
tion "01# for the determination of pn and qn[

3[ Mass transfer on the cylindrical surface

The in~uence of the surface curvature on the mass
transfer is determined by the ratio of the di}usion layer
thickness d� to the radius of the mass transfer active
surface R\ =v= � d�:R[ For large values of the molecular
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Schmidt number\ Sc ¼ 092\ the order of magnitude of the
di}usion boundary layer thickness does not exceed the
dynamic length] d� ¾ yt[ By means of the well!known
Blasius law it is possible to present the dynamic length in
terms of the equivalent hydraulic diameter "or radius R#
and the Reynolds number\ =v= ¼ 09:Re6:7[ For Re � 092\
the magnitude of =v= is about 1[3×09−1[ So for turbulent
~ows\ =v= can be considered as a small parameter[

Under the same conditions as for the plane surface
"molecular and turbulent mass transfer in the longi!
tudinal direction are negligible# the convective di}usion
equation in the polar cylindrical coordinates takes the
form]

Y1C:1Z � 1:1Yð"0¦Y3#1C:1YŁ−v"0¦Y3#11C:1Y1\

"07#

where Y �"R2r#:d�\ the sign "¦# corresponds to the
case when the active mass transfer surface is the internal
surface of a tube or the outer annular cylinder "{inner
~ow|# and the sign "−# corresponds to the case when the
active mass transfer surface is the inner annular cylinder
"{outer ~ow|#\ and v � =v= for the case of the {inner ~ow|
and v � −=v= for the case of the {outer ~ow|[

The solution can be presented as a series with respect
to the parameter v]

C"Z\ Y\ v# � C9"Z\ Y#¦vC0"Z\ Y#¦o"v1# "08#

where C9"Z\ Y# corresponds to the concentration pro_le
for the plane surface and C0"Z\ Y# gives the correction
with respect to the curvature factor[ In the same manner
the mass ~ux density and the mass transfer coe.cient
can be expressed by]

j¼"Z\ v# � j¼9"Z\ 9#¦vj¼0"Z#¦o"v1# "19#

K
"Z\ v# � K
9"Z\ 9#¦vK
0"Z#¦o"v1# "10#

where J9 and K9 correspond to the plane case solution[
The equation for the correction C0 has the form]

Y1C0:1Z−1:1Yð"0¦Y3#1C0:1YŁ �"0−Y3#11C9:1Y1[

"11#

In order to determine the correction for mass ~ux
density for all the values of Z\ the numerical solution of
equation "07# was done for the value v � 29[90[ It can
be concluded that the ratio of the {curvature correction|
to the plane case solution is less than 4Re−6:7 and is
negligible for the turbulent ~ows at least with 88) accu!
racy[ For a given value of the wall shear stress\ the cur!
vature increases the mass ~ux on the surface of the {inner
~ow| and decreases it for the {outer ~ow|[

4[ Discussion

As shown in the previous section\ the in~uence of the
surface curvature on the mass transfer in turbulent ~ows

is negligible at least with 0) accuracy[ So\ mass transfer
in tubes and annuli does not need any additional treat!
ment and we can restrict the discussion to the case of the
plane geometry[

The numerical solution of the problem "Section 2#
gives the complete description of the mass transfer
phenomena in dimensionless variables[ Three zones can
be distinguished[ In the beginning of the active mass
transfer surface\ the development of the di}usion bound!
ary layer is due to the mean longitudinal velocity and the
molecular di}usion[ In this zone only one hydro!
dynamical parameter\ namely\ the mean wall shear stress
is important to predict the mass transfer coe.cient and
the well!known Le�ve¼que solution can be used[

Relatively far from the beginning of the mass transfer
active surface\ the fully developed di}usion layer of a
constant thickness is formed[ In this zone the mass trans!
port is due to the turbulent and molecular di}usion in
the normal direction only\ and the other hydrodynamical
parameter kyy is important to predict the mass transport[
The constant kyy determines the magnitude of the tur!
bulent di}usivity\ see equation "1#[

In the transitional zone all the three mechanisms of the
mass transfer are important\ namely\ convective trans!
port by the mean longitudinal velocity\ molecular
di}usion and turbulent mass transfer in the normal direc!
tion[

The zones of applicability of the Le�ve¼que and fully
developed solutions were numerically determined[ The
mass ~ux density and mass transfer coe.cient are cal!
culated with 88) accuracy by equations "04# and "05#
for 9 ³ Z ³ 9[6[ For large Z × 9[6\ the stabilized solution
is valid\ equations "02# and "03#[ To return to the starting
variables\ equation "7# can be used[ Here one delicate
problem arises[ In the de_nition of the longitudinal l�
and the normal d� space scales\ equation "7#\ two
hydrodynamical parameters are presented[ The mean wall
shear stress t¹ can be connected with the Reynolds number
by means of the well!established Blasius or Nikuradze
laws[ Some additional information should be used in
order to determine the parameter kyy[ For example ð8\ 09Ł
this parameter is given in terms of the molecular viscosity
and involves a _tting empirical constant k]

kyy � kn^ k ¼ 1[3×09−3[ "12#

Applying equation "12# and the Blasius law for the
wall shear stress as well\ we obtain by means of equation
"7#]

d� � k0:3Sc−0:3yt^ 0� � k−2:3Sc0:3yt^ yt � 4dhRe−6:7\

"13#

where dh is the equivalent hydraulic diameter[ For the
value k � 1[3×09−3\ equation "13# gives]

0�:dh ¼ 1[5×092Sc0:3Re−6:7[ "14#

Equation "14# can be used for the estimation of the zones
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of applicability of the Le�ve¼que and the fully developed
solutions in terms of hydraulic diameter[

For example\ for the case Re � 093 and Sc � 092\ a
constant mass ~ux density can be obtained with 88)
accuracy at z � 1[6 dh and with 84) accuracy at z � 0[5
dh[ But for the calculation of mass transfer coe.cient\
the assumption of the fully developed di}usion layer
"K � j�# can be used only if the mass transfer active
surface is larger than 59 dh and 01 dh\ for 88 and 84)
accuracy\ respectively[ In the opposite case\ the cor!
rection with respect to equation "03# should be done[ The
Le�ve¼que solution can be used for the calculation of the
mass ~ux density with 88 and 84) accuracy up to z � 9[0
dh and z � 9[3 dh\ respectively\ for the case Re � 093 and
Sc � 092[

The Sherwood number in fully developed di}usion
layer is given by]

Sh� � j�dh:ð"c�−c9#DŁ\ "15#

where j� was given by ð2Ł]

j� � 9[89 D"Co−C�#:d�[ "16#

From equations "7#\ "12#\ "15# and "16#\ the Sherwood
number is equal to]

Sh� � aSc0:3Re6:7[ "17#

The exponent 0
3

for the Schmidt number is due to the
power factor 3 in equation "1# for the turbulent di}usion
coe.cient[ The constant a is connected with the constant
k]

a � 9[079 k0:3 ¼ 9[911[ "18#

5[ Conclusion

Both qualitative and quantitative treatments of the
mass transfer problem in turbulent ~ows at large Schmidt
numbers Sc are presented in this paper[ The conclusions
which can be useful for practical application are the fol!
lowing]

"0# The assumption of the fully developed boundary
layer can be used for the prediction of the mass trans!
fer coe.cient if the length l of the active surface is
larger than] l ×"0:o#2[23×093Sc0:3Re−6:7 dh\ where o

is an acceptable error in percentages[ In the opposite

case\ the in~uence of the di}usion entrance length
should be taken into account[

"1# The mass ~ux density on the microelectrode surface
can be calculated by means of the Le�ve¼que formula
if its length l is less than l ³ a×091Sc0:3Re−6:7 dh\
where a � 9[54 and a � 1[23 for 88 and 84) accu!
racy\ respectively[
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